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Abstract. We use a large N-electron determinant-basis method to calculate the excitation energy of valence
electrons in a C+–C60 collision without fragmentation at energy K. We study a central collision in the range
50 eV <K < 15 keV. The electronic excitation energy of π electrons displays two main maxima at 1.15 and
5 keV. They are interpreted as resonance effects. We calculate by two independent approaches in real time
the electron densities of the sites and the currents of the bonds. We show that the valence electrons tend to
form a wake following the incident ion at the same velocity.

PACS. 36.40.Cg Electronic and magnetic properties of clusters

1 Introduction

We study the electronic response of a C60 cluster colliding
with a fast incident ion. We only consider a collision with-
out fragmentation, a physical situation encountered in re-
cent experiments. For example, in Ar8+–C60 collisions [1],
the production of Cp+60 with p varying from 1 to 5 has been
observed.

A two-step description of the process can be proposed.
First, a relatively large excitation energy of the valence
electrons is stored, because of their interaction with the
rapid incident charge; then the system de-excites through
autoionization or photoemission. In this paper, we con-
centrate on the first step (the storage of excitation energy
during the collision); we do not study the second aspect
of the phenomenon (the various de-excitation modes). We
consider a C+–C60 collision without fragmentation in the
range of energies 50 eV ≤K ≤ 1.5×104 eV.

As it is often assumed in this kind of model, we sup-
pose that during the collision, the C60 nuclei remain frozen
on their sites. This is justified by a comparison between
the interaction time, ∼ 10−14 s, and the phonon frequency,
∼ 10−13 s. The previous assumption becomes questionable
for low K energies: K . 100 eV (for K = 100 eV the cross-
ing time is 2×10−14 s). In this range, the nuclei move sig-
nificantly throughout the interaction and this motion can
contribute to the total excitation energy. This point war-
rants a more precise description.

If the nuclei is frozen and the incident particle is nonin-
teracting with C60 at large times, as we assume, then the
final electronic ground state is the same as the initial elec-
tronic state. For very low velocity collisions, where prac-
tically no electron-hole excitations are created, the wave
function will be described by the Hamiltonian ground state

(i.e., the adiabatic wave function); this process is called
adiabatic. For relatively large K values, electron-hole ex-
citations are produced, and our calculation can be consid-
ered as measuring the nonadiabatic character of the phe-
nomenon.

We also suppose that the charge of the incident particle
is constant. Here again, this approximation is mainly valid
for large K values, because for low K values, a possible
electron capture by the incident ion cannot be excluded.
An improvement in this area of the model is discussed at
the end of the paper.

Let us recall why it is necessary in N-electron time-
dependent problems for one to use a determinant basis.
Indeed, once the solution of the one-electron Hamiltonian
has been performed at any time, nothing is known about
the occupancy of the one-electron states. The solution that
would consist in populating the one-electron states with
the lowest energies is arbitrary, and can lead to import-
ant errors. For example Friedel [2, 3], Anderson [4], and
Nozières et al. [5] show that when a large N-electron gas
is submitted to a sudden change of local potential, the N-
electron state built by populating the lowest energies of
one-electron states is strictly empty. The system is pro-
jected only on excited states. This phenomenon leads in
particular to the edge- singularity effect observed in metal
X-ray spectra.

Our method, which will be presented in Sect. 2, leads to
a real-time quantum description of the interaction between
the impinging charge and the aggregate valence electrons.
In Sect. 3, we apply our method to a central collision. In
addition to the total electronic excitation energy in the col-
lision, we calculate the time dependence of the populations
on each site and the currents in the aggregate.

Similar problems have been investigated by the use of
other methods. Guet et al. [6, 7] use a semiclassical limit of
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a time-dependent Hartree–Fock (TDHF) description. Also
of note is the recent work of Reinhard et al. [8] who use
a time-dependent density functional theory. We come back
to these works below.

2 The model

In this paper, we limit the calculation to the excitation of
the π electrons; the role of the σ electrons is also briefly
discussed at the end of the paper.

We introduce as H0 the unperturbed tight binding
Hamiltonian of the C60 π electrons; then H(t) will be writ-
ten:

H(t) =H0 +V (t), (1)

where V (t) is due to the positive charge of the incident ion
located at position R(t). If c+rσ (crσ) is the creation (an-
nihilation) operator of an electron with spin σ on atomic
orbital ϕr, we may write:

H0 = β
∑

σ,r,s neigh. r 6= s

c+rσcsσ +Eat

∑
r

c+rσcrσ (2)

V (t) =
∑
r,s,σ

Vrs(t)
[
c+rσcsσ + c+sσcrσ

]
(3)

where β, β ∼ −1.25 eV, and Eat are respectively the hop-
ping and diagonal terms in the C60 tight binding Hamilto-
nian [9] (the results reported here do not depend on Eat).

Formally, for a Z incident charge we have:

Vrs(t) =−
Ze2

4π ε0

∫
ϕ∗r(r)ϕs(r)

d3r

|r−R(t)|
. (4)

We suppose that its trajectory is linear and that its v vel-
ocity is constant; K = 1

2mv
2 is the kinetic energy.

At time t=−∞, V (t) = 0, and Ψ(t=−∞) = Ψ0 is the
ground state of the unperturbed C60 electrons. If we call φ`
(`= 1, 2, ...60) the one-electron molecular eigenstates ofH0

ordered by increasing energies, the Ψ0 determinant will be
written:

Ψ0 = det (φ1↑φ1↓φ2↑φ2↓ · · ·φ30↑φ30↓) . (5)

Now let us consider our working determinant basis. Be-
cause the dimension is too large (the dimension is given by
the number of possible ways for sharing 30 ↑ and 30 ↓ elec-
trons in 60 ↑ and 60 ↓ states; this gives∼ 1034) for practical
calculations, a convenient size-limited basis, that we will
call basis B with Ψi elements, has to be determined.

We choose the Ψi elements among the N-electron eigen-
states of H(τ), where τ is a given intermediate time in the
process. Let us call Ψad(t) the N-electron adiabatic solu-
tion of Hamiltonian H(t), given by:

H(t) Ψad(t) =Ead(t)Ψad(t) . (6)

The Ψi elements and the time τ are fixed so that, at any
time of the process, Ψad(t) can be accurately developed in
basis B. In the calculations presented in Sect. 4, we take
τ = −t+0 which is the time when the projectile has just
entered the C60 cage and check that Ψad(t) can be well de-
veloped in basis B at various successive times on the trajec-
tory, namely t=−∞, t=−t+0 , t= 0, t= t−0 , and t= +∞ .
We retain the determinants which have the largest weights
in the development of Ψad(t) at these times. The size of
basis B is δ ∼ 200 determinants.

The Schrödinger equation projected on basis B gives
a system of 2δ coupled differential equations. We will call
ai(t) the weight of Ψ(t) on Ψi:

Ψ(t) =
∑
i

ai(t)Ψi . (7)

3 Central collision

We consider a central collision where the incident ion, sup-
posed to be a C+ ion, enters and leaves the C60 cage by
crossing two parallel pentagons. The distance between the
two pentagons is 6.2 Å.

We determine the basis according to the method de-
scribed before. As the Ψi determinants are eigenstates of
H(−t0), we get for the average total energy E(t):

E(t) = 〈Ψ(t) |H(t)|Ψ(t)〉=
∑
i

a∗i (t) ai(t) εi

+
∑
i,j

a∗i (t) aj(t) 〈Ψi |V (t)−V (−t0)|Ψj〉 . (8)

We obtained the results reported in this paper by mak-
ing some simplifying assumptions: (1) We suppose that
the electrostatic potential is “felt” by the electrons only
when the incident charge is inside the cage (−t0 ≤ t≤ t0).
In other words, we suppose that the π electrons behave
as metallic electrons that screen the external fields. (2) In
the Vrs matrix given by formula 4, we retain only diagonal
elements; this is justified by the small overlap between φr
and φs wave functions that exists when r 6= s. (3) We use
for Vrr(t) a simple formula, which is exact in the limit of
strongly localized ϕr wave functions:

Vrr(t)∼
ϑ

‖Rr−R(t)‖
.

The same formula gives, at t=−t0, for one of the atoms of
the first crossed pentagon (say atom 1):

V11(−t0) =
ϑ

‖R1−R(t)‖
.

We will not take for ϑ the Coulombic value (deduced from
(4)) because screening effects must be taken into account.
They can be estimated from a previous study of 1s photo-
emission spectra in C60 [10]. This work shows that the
average value of the potential energy “felt” by π electrons
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Fig. 1. D excitation energy transferred to π electrons in a cen-
tral C+ → C60 collision versus the K kinetic energy. At low
K energies, the crossing time of the C60 cage is about 20% of
a typical phonon frequency (more precisely, the crossing time is
2×10−14 s for K = 100 eV). As a consequence, in this range of
K values, the assumption that the atoms remain frozen on their
sites loses a part of its validity.

located on a given atom when a deep 1s hole appears on the
same site is ∼ 3β (the average distance between the elec-
trons and the hole is ∼ 0.7 Å). Here the distance is larger
‖R1−R(−t0)‖ ∼ 1 Å, so the value V11(−t0) = 2β appears
as likely. The previous assumptions can be summarized in
the following formula:

Vrs(t) = δrs2β
‖R1−R(−t0)‖

‖Rr−R(t)‖
(9)

We are mainly interested in the excitation energy D at
the end of the process that is a function of the kinetic en-
ergy K:

D =E(t=∞)− ε0

This quantity is plotted, in Fig. 1, versus K for 50 eV <
K < 1.5×104 eV. The curve will be discussed below. In
the range K . 100 eV, as mentioned in the Fig. 1 caption,
the assumption that the atoms remain frozen on their sites
loses a part of its validity.

It is interesting to follow how the C60 electrons react
to the incident ion potential in real time. We have cal-
culated the population nr(t) on a given site r and the
electronic current Ir,s(t) between two r and s neighbours
(from r to s). The current operator is given by:

Ir,s(t) = 〈Ψ(t)|Jr,s|Ψ(t)〉

with

Jr,s = jI
∑
k

c+r (k)cs(k)− c+s (k)cr(k) . (10)

In this formula, I is a real constant with the dimension of
a current, j =

√
−1, and the summation is made over the 60

Fig. 2. The case of kinetic energy K = 1.15 keV. The C60

atoms are grouped in 8 planes perpendicular to the C+ cen-
tral trajectory; atom 1 belongs to the first crossed pentagon
(first plane), and atom 6 is the atom 1 neighbour belonging
to the second plane. We plot the atom 1 electronic population
(full line) versus the length d travelled inside the C60 cage.
The dashed and dotted line is related to the i6,1(d) current.
In order to get a clear figure, we plot α i6,1(d) +α′ with α= 3
and α′ = 1. As a consequence, the plotted quantity is always
positive, but one must keep in mind that i6,1(d) continuously
oscillates from positive to negative values.

k electrons. Finally, one gets:

Ir,s(t) = Iir,s(t)

where ir,s(t) is the dimensionless quantity plotted on
Figs. 2 and 3.

Our results are given for two sites belonging to the
pentagons crossed respectively on entering (site 1) and on
leaving the cage (site 60). Instead of the time t, we use an
equivalent variable d, given by the distance traveled by the
incident ion inside the cage: d= v(t+ t0) (−t0 ≤ t≤ t0). As
expected, the populations and the currents have correlated
variations. In particular, n(t) maxima (minima) systemat-
ically occur when ir,s(t) becomes negative (positive).

We observe in the figures that the charge in excess ap-
pearing on the sites is related to the incident ion position.
For the first pentagons (Fig. 2), the largest population ap-
pears at d∼ 1 Å, i.e. a short time after entering the cage,
and for the last pentagon (Fig. 3), the largest population
is reached at d ∼ 6.2 Å, almost when the incident charge
leaves the cage. We may deduce from the previous results
that the C60 valence electrons tend to form a wake follow-
ing the positive charge and that this mobile screen prop-
agates in C60 at the same velocity as the incident charge.
This screen displacement happens with loss of electrons,
since the excess charge on the last pentagon is smaller than
on the first one.

Figure 2 also shows that the excess charge on site 1 is
maximum when d∼ 1 Å. We see in Fig. 3 that the charge on
site 60 begins to increase when the incident ion is at about
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Fig. 3. The case of kinetic energy K = 1.15 keV. Atom 60 is
one of atoms of the last crossed pentagon, and atom 54 is the
atom 60 neighbour belonging to the preceding plane (see Fig. 2
caption). We plot the population on atom 60 (full line) and the
quantity α i54,60(d) +α′, (dashed and dotted line). versus the
length d travelled inside the cage. As in Fig. 2, we take α= 3
and α′ = 1.

1 Å from the site. Then it seems reasonable to take de ∼ 1 Å
as an effective interaction length, which may be defined as
the part of the trajectory close to a given site where the
perturbative action of the incident ion is effective. This dis-
tance is crossed in t1 ∼ 0.7×10−15 s for the first main max-
imum of Fig. 1 (K = 1.1 keV) and t2 ∼ 0.35×10−15 s for
the second main maximum (K = 5 keV). Then let us con-
sider the C60 electronic energy spectrum. The two first ex-
citation levels (t1u, t1g) are grouped at about 0.87±0.13 β
to which h̄/0.87β ∼ 0.58×10−15 s corresponds, and the
next group of three excited levels (hg, t2u, hu) are at about
1.6±0.16 β, to which h̄/1.6β ∼ 0.31×10−15 s corresponds.
In spite of the roughness of this evaluation, one may say
that there is a correspondence between t1 and t2 and the
two characteristic excitation times. This leads us to inter-
pret the main excitation energy maxima as a resonance of
the first and second groups of excited levels. Other mod-
ulations may appear in the curve. In particular, we think
that the small maximum at 0.1 keV is not a direct reson-
ance, and may come from a complex coupling between the
excited states. It is likely that other maxima will appear at
largerK energies corresponding to other groups of excited
states.

It is noteworthy that the discrete D(K) structure ob-
tained in this study is related to the high C60 spectrum
degeneracy. For larger aggregates, the discreteness of the

D(K) curve will progressively disappear as the average
level separation decreases. Note that no oscillations are ob-
served in the semiclassical models or time-dependent dens-
ity functional theory mentioned before [8, 11]; for example
in [11] D(K) increases continuously with K.

It seems to us that the presence of maxima in the calcu-
latedD(K) curve for C60 might be experimentally verified.
As the C60 cage must have a given orientation with respect
to the incident ion beam, we suggest the use of solid crys-
talline C60 samples at low temperatures, for which chan-
neling experiments should give minima of the penetration
depth for the D(K) energy maxima.

The calculation developed in this paper has to be ex-
tended to σ electrons. It is likely that the total excitation
energy will be closed to four times the D value, but a pre-
cise calculation is necessary.

Let us briefly discuss how the possibility of electron
capture by the incident ion can be introduced in the model.
This problem is relevant to the ionization problem encoun-
tered in SIMS models [9]. The new feature to be introduced
in the present calculation is a possible transfer of electrons
from C60 to the incident ion. We will then obtain a prob-
ability of neutralization that depends on the ion position.
By using this quantity, a calculation of the average excita-
tion energy can be made using the same method as in this
paper. We intend to develop this kind of calculation. More-
over, our investigation of the differential and total excita-
tion cross section, combining a determination of channel-
ing impact parameters (i.e. impact parameters for which
one may expect nonfragmentation collisions) and of the ex-
citation energy inside these channels, is in progress.
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